Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 203: 139-146, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34653444

RESUMO

The genus Brachycephalus includes small species of aposematic anurans known as microendemic, occurring in the mountains of the Atlantic Forest. Brachycephalus ephippium, B. nodoterga and B. pernix have been reported to contain the neurotoxin tetrodotoxin in skin and viscera. The biological conservation of several Brachycephalus species is currently threatened by climate change, deforestation, and the pandemic caused by the fungus Batrachochytrium dendrobatidis (Bd). Despite the well-known importance of amphibians' associated bacteria in the defensive role against pathogens, there is still a poor understanding of amphibian microbiome composition. The present study investigated the composition of B. pitanga microbial community and the presence of TTX in the host and in cultures of bacterial isolates, using a combination of metagenomics, bacterial culture isolation, mass spectrometry and metabolomic analyses. Results of culture-dependent and -independent analyses characterized the microbial communities associated with the skin and viscera of B. pitanga. Mass spectrometry analysis indicated the presence of TTX in host tissues, while bacterial production of TTX was not observed under the experimental conditions used in this investigation. This is the first report confirming the occurrence of TTX in B. pitanga.


Assuntos
Eugenia , Microbiota , Animais , Anuros , Bactérias , Tetrodotoxina/toxicidade
2.
Front Microbiol ; 8: 2272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204142

RESUMO

Over recent decades several coral diseases have been reported as a significant threat to coral reef ecosystems causing the decline of corals cover and diversity around the world. The development of techniques that improve the ability to detect and quantify microbial agents involved in coral disease will aid in the elucidation of disease cause, facilitating coral disease detection and diagnosis, identification and pathogen monitoring, pathogen sources, vectors, and reservoirs. The genus Vibrio is known to harbor pathogenic strains to marine organisms. One of the best-characterized coral pathogens is Vibrio coralliilyticus, an aetilogic agent of White Plague Disease (WPD). We used Mussismilia coral tissue (healthy and diseased specimens) to develop a rapid reproducible detection system for vibrios based on RT-QPCR and SYBR chemistry. We were able to detect total vibrios in expressed RNA targeting the 16S rRNA gene at 5.23 × 106 copies/µg RNA and V. coralliilyticus targeting the pyrH gene at 5.10 × 103 copies/µg RNA in coral tissue. Detection of V. coralliilyticus in diseased and in healthy samples suggests that WPD in the Abrolhos Bank may be caused by a consortium of microorganism and not only a single pathogen. We developed a more practical and economic system compared with probe uses for the real-time detection and quantification of vibrios from coral tissues by using the 16S rRNA and pyrH gene. This qPCR assay is a reliable tool for the monitoring of coral pathogens, and can be useful to prevent, control, or reduce impacts in this ecosystem.

3.
PeerJ ; 3: e741, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699199

RESUMO

We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and several benthic hosts in the SAO. The benthopelagic coupling observed here stands out the importance of vibrios in the global ocean health.

4.
Genome Announc ; 2(6)2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25395632

RESUMO

Here, we present the draft genome sequences of Lactococcus lactis subsp. lactis CECT 4433, a cheese fermentation starter strain. The genome provides further insight into the genomic plasticity, biocomplexity (including gene strain specifics), and evolution of these genera.

5.
PeerJ ; 2: e427, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024905

RESUMO

Five novel strains of Photobacterium (A-394T, A-373, A-379, A-397 and A-398) were isolated from bleached coral Madracis decactis (scleractinian) in the remote St Peter & St Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. Healthy M. decactis specimens were also surveyed, but no strains were related to them. The novel isolates formed a distinct lineage based on the 16S rRNA, recA, and rpoA gene sequences analysis. Their closest phylogenetic neighbours were Photobacterium rosenbergii, P. gaetbulicola, and P. lutimaris, sharing 96.6 to 95.8% 16S rRNA gene sequence similarity. The novel species can be differentiated from the closest neighbours by several phenotypic and chemotaxonomic markers. It grows at pH 11, produces tryptophane deaminase, presents the fatty acid C18:0, but lacks C16:0 iso. The whole cell protein profile, based in MALDI-TOF MS, distinguished the strains of the novel species among each other and from the closest neighbors. In addition, we are releasing the whole genome sequence of the type strain. The name Photobacterium sanctipauli sp. nov. is proposed for this taxon. The G + C content of the type strain A-394(T) (= LMG27910(T) = CAIM1892(T)) is 48.2 mol%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...